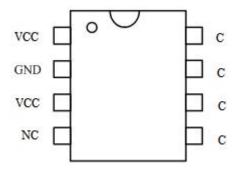


PL3383T

AC/DC非隔离 降压型恒压输出芯片

芯片概述:

PL3383T是一颗AC/DC非隔离降压型恒压输出芯片,适用于90Vac~265Vac全电压输入的非隔离电源。


其内部集成了高压功率开关,采用专利电压电流控制技术即可实现精确的电压和电流调节,极大的方便客户使用。

PL3383T的复合模式的应用使芯片能够实现低静态功耗、低音频噪音、高效率。轻载时芯片工作在PFM模式,随着负载增加,芯片会逐渐进入PWM模式,可保证系统低功耗待机,高效率工作。

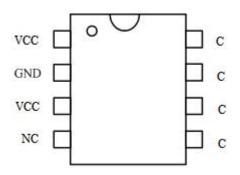
PL3383T 同时具有多种保护功能: VCC 欠压保护、VCC 过压保护、逐周期峰值电流检测、输出开路保护、输出短路保护和过温保护等。

PL3383T 提供 SOP8 封装

管脚分布图:

主要特点:

- 输出12V
- 内部集成高压功率管
- 内部集成高压启动电路
- 输出电压精度(±5%)
- 内置抖频技术减小EMI
- 可提高效率的自适应控制技术
- 内置前沿消隐
- 逐周期电流限制
- VCC欠压/过压保护
- 输出开路保护
- 输出短路保护
- 过温保护


应用:

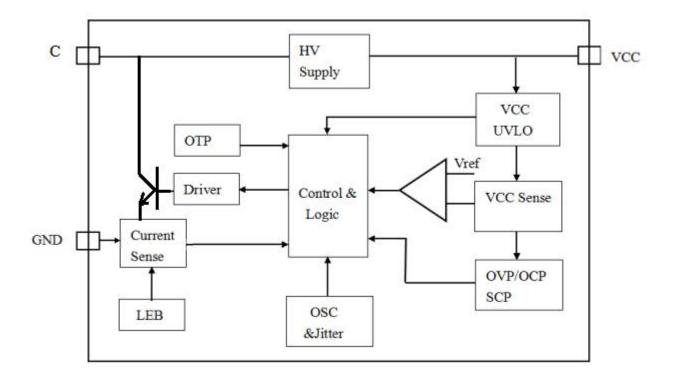
- 主控芯片供电电源
- 小家电辅助电源
- 智能家居
- 其他类电源应用

1 封装管脚分布图

2 管脚描述

管脚名	描述
VCC	芯片电源输入
GND	芯片地
NC	悬空脚
С	芯片功率管集电极

3 最大额定值

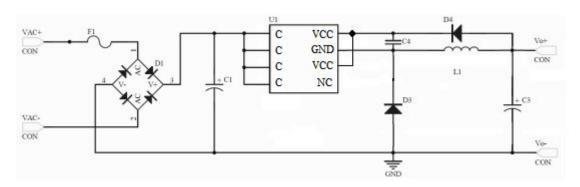

参数	符号	范围	单位
VCC 电压	VCC	-0.3 到 20	V
最大工作结温	Tjmax	150	°C
存储温度	Tsto	-55 到 150	°C
焊接温度(Soldering,10secs)	Tlea	260	°C

注释:超过最大额定值可能损毁器件;超过推荐工作范围的芯片功能特性不能保证;长时间工作于最大额定条件下可能会影响器件的稳定性。

4 推荐工作条件

参数	数值	单位
工作温度	-20 ∼ +85	°C
最大负载电流@温升△T≤40℃	300	mA

5 结构框图



6 电气特性

(无特殊说明,其测试条件为: Vout=12V, TA = 25℃)

参数	符号	测试条件	最小	典型	最大	单位
电源电压(VCC)						
静态电流	Idd_static			0.5		mA
VCC 退出欠压阈值	UVLO_OFF	VCC_rise		12		V
VCC 进入欠压阈值	UVLO_ON	VCC_fall		6.8		V
VCC 过压保护	VCC_OVP			13.8		V
VCC 过流保护	VCC_OLP			11.5		V
工作频率(OSC)						
最大工作频率	Focs_max			50		kHz
最大占空比	D_max			36		%
内置电流检测(CS)						
检测峰值电流	Ipk			750		mA
前沿消隐时间	T_leb			300		ns
过温检测(OTP)						
进入过温保护	T_otp			150		°C
内置功率管						
集电极-基极击穿电压	Vcbo		800			V
集电极-发射极饱和电流	Icesat			1000		mA

7 典型应用

输出应用电路

应用说明:

PL3383T 为降压型恒压输出芯片,集成高压功率管和内部采样电路,具有高压启动且仅需少量外围器件即可达到优异的恒压控制。可调输出电压可满足客户多种需求,应用范围广泛。

7.1 启动电流和工作电流

系统上电之后,母线电压从 PL3383T 的 C 端对 VCC 充电,当 VCC 电压达到开启阈值电压,芯片内部电路开始工作。当系统工作稳定时,输出电压给 VCC 供电。芯片的待机电流很低,再加上特有的复合模式控制,从而提高了系统的效率,特别是系统处于轻载条件下。

7.2 电感选择

降压型拓扑电路电感值的选择一般是在最恶劣条件下进行计算得出,即使用最高输入电压值,在最大负载条件下,电路工作在 CCM 模式,并且达到最高工作频率。推荐此时的电感电流纹波系数 r 值取不小于 0.25,根据电感公式可得出以下公式:

$$L = \frac{V_{OUT}(V_{IN} - V_{OUT})}{V_{IN} * F * \Delta I_{I}}$$

其中,

$$\Delta I_L = I_{OUT} * r$$

7.3 峰值电流

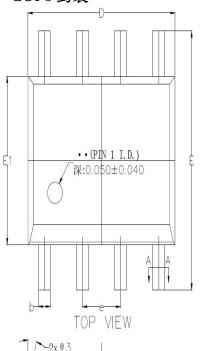
因为最大负载条件下芯片工作在 CCM 模式。峰值 电流公式

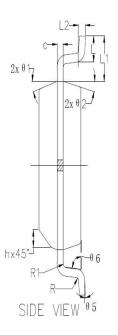
$$I_{L_peak} = I_{OUT} + \frac{\Delta I_L}{2}$$

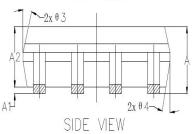
7.4 续流二极管

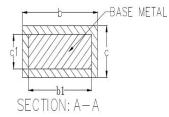
PL3383T 电路的续流二极管应使用低导通压降的快速恢复二极管,这样可以提高效率,同时注意二极管的反向击穿电压最好不小于输入电容耐压。

7.5 假负载


为了防止空载或载很小的时候输出电压不稳定,所 以需要假负载电阻提供一定的负载效果,合适的假 负载会使输出稳定而又不造成系统静态功耗过大。


7.6 保护功能


PL3383T 内置了多种保护功能,包括:逐周期限流保护,VCC 过压/欠压保护,输出开/短路保护,过温保护等。


8 封装

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX
А	1.40	1.55	1.70
A1	0.05	-	0.25
A1 A2	0.05 1.30	1.40	1.50
b	0.37 0.35	-	0.47 0.45 0.27 0.25
b1	0.35	1	0.45
С	0.17 0.15	-	0.27
c1	0.15	- 4.90 -	0.25
D	4.80	4.90	5.00
Ε	5.85	_	6.15
E1	3.80	3.90	4.00
е		1.27 BSC	
c c c1 D E E E1 e L L1 L2 R R1	0.57	_	0.87
L1	0.96	1.06	1.16
L2		0.25 BSC	
R	0.07	=	100
R1	0.07	-	-
h	0.25	0.35	0.45
θ 1	15°	17°	19°
θ 2	0.07 0.25 15' 11' 15'	- 0.35 17' 13' 17'	0.45 19° 15° 19°
θ 3	15°	17°	19°
θ 4	11*	13°	15°
θ 2 θ 3 θ 4 θ 5	0.	3°	6
θ6	55°	3° -	85*
Ø	0.40	0.50	0.60

6

9 注意事项

聚元有权在任何时刻修改其产品信息,不再另行通知;客户在下订单前应确保产品信息的及时更新和完整性。