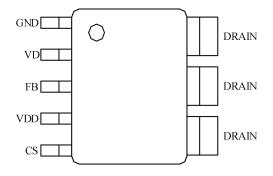


PL3567

副边反馈准谐振PWM控制芯片

芯片概述:


PL3567是一款高性能的电流模PWM控制芯片。其采用的准谐振技术可以有效地减小开关损耗和EMI,提高系统的效率,满足最新的能源标准,适用于90Vac~265Vac全电压输入、副边反馈的隔离电源。

PL3567的复合模式的应用使芯片能够实现低静态功耗、低音频噪音、高效率。轻载时芯片工作在PFM模式,随着负载增加,芯片会逐渐进入准谐振PWM模式,可保证系统低功耗待机,高效率工作。

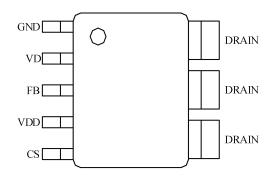
PL3567 同时具有多种保护功能:交流欠压/过压保护、VDD 欠压/过压保护、逐周期峰值电流检测、CS 管脚短路保护、输出欠压/过压保护、输出过载保护和过温保护等。

PL3567 提供 ASOP-6 封装。

管脚分布图:

主要特点:

- · 支持准谐振/CCM模式
- VCC工作电压范围宽
- 可提高效率的自适应控制技术
- 内置软启动
- 驱动电压钳位
- 内置前沿消隐
- 逐周期电流限制
- · VDD欠压/过压保护
- 输出欠压/过压保护
- 交流欠压/过压保护
- · CS管脚短路保护
- 过温保护


应用:

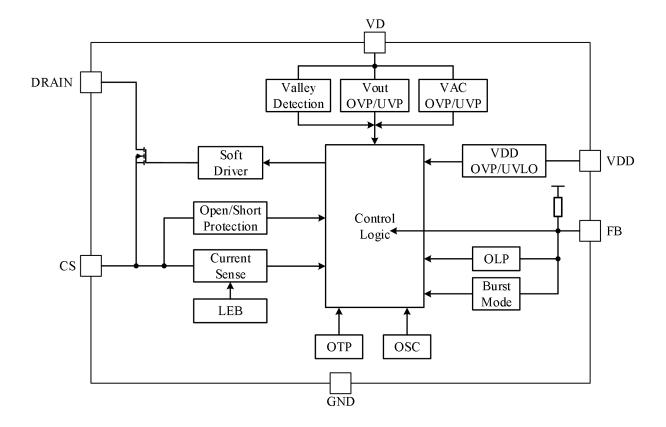
- 快充充电器
- PD电源
- 机顶盒电源
- 电源适配器
- 其他类电源应用

1 封装管脚分布图

2 管脚描述

管脚名	描述							
GND	芯片地							
FB	反馈端输入							
VD	谷底检测端,接分压电阻网络到辅助绕组							
CS	电流采样端,接采样电阻到地							
VDD	芯片电源输入							
DRAIN	功率MOS管漏极							

3 最大额定值

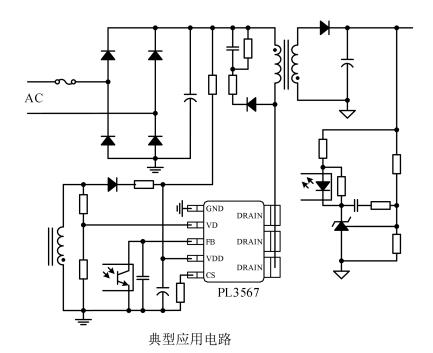

参数	符号	范围	单位
VDD 电压	VDD	-0.3 到 40	V
FB 输入	FB	-0.3 到 6	V
VD 输入	VD	-0.3 到 6	V
CS 输入	CS	-0.3 到 6	V
最大工作结温	Tjmax	150	°C
存储温度	Tsto	-55 到 150	°C
焊接温度(Soldering,10secs)	Tlea	260	°C

注释: 超过最大额定值可能损毁器件; 超过推荐工作范围的芯片功能特性不能保证; 长时间工作于最大额定条件下可能会影响器件的稳定性。

4 推荐工作条件

参数	数值	单位
工作温度	-40 ~ +85	°C

5 结构框图



6 电气特性

(无特殊说明, 其测试条件为: VDD = 15V, TA = 25℃)

参数	符号	测试条件	最小	典型	最大	单位
电源电压(VDD)						
VDD 启动电流	IDD_ST	VDD=VDD_ON-0.5V		5		μΑ
VDD 启动电压	VDD_ON	VDD_rise		17.5		V
VDD 欠压保护阈值	VDD_OFF	VDD_fall		7.5		V
VDD 工作电流	IDD_OP			0.5		mA
VDD 过压保护	VDD_OVP			40		V
保护状态下 VDD 电流	IDD_Fault	V _{FB} =3V		500		μΑ
反馈输入(FB)						
FB 开环电压	VFB_open			5.2		V
FB 短路电流	IFB_short			300		μΑ
OLP 保护 FB 电压	VFB_OLP			4.2		V
OLP 保护延时	TOLP			50		ms
FB 进入 burst 阈值	Vburst_in			1.4		V
FB 退出 burst 阈值	Vburst_out			1.5		V
工作频率(OSC)						
最高工作频率	Focs_max			80		kHz
最低工作频率	Focs_min			22		kHz
电流检测(CS)				ı		
CS 限流	VCS_th			750		mV
前沿消隐时间	T_leb			300		ns
短路保护阈值	VCS_short			100		mV
短路保护检测时间	TCS_short			2		μs
退磁检测(VD)		•	•		'	
输出过压保护阈值	Vo_ovp			3.15		V
输出欠压保护阈值	Vo_uvp			0.6		V
AC 过压保护阈值	IAC_OVP			1.8		mA
AC 欠压保护阈值	IAC_UVP			200		μΑ
过温检测(OTP)					. '	
进入过温保护	T_otp			150		°C
内置功率管					. '	
MOSFET 漏极击穿电压	BVdss		650			V
导通电阻	Rdson			0.52		Ω

7 典型应用

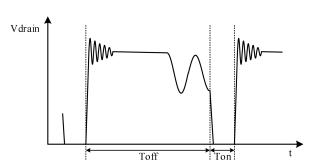
应用说明:

PL3567 为适配器/快充充电器应用提供了有效的高性能、低成本解决方案,同时也能满足国际能源标准要求。

7.1 启动电流和工作电流

系统上电之后,母线电压通过启动电阻对 VDD 充电,当 VDD 电压达到开启阈值电压,芯片内部电路开始工作。当系统工作稳定时,辅助绕组给 VDD 供电。芯片的待机电流很低,再加上特有的复合模式控制,从而提高了系统的效率,特别是轻载条件下。

7.2 软启动


PL3567 内部集成软启动电路,当系统上电,VDD 达到 VDD_ON 后,芯片开始工作,电感电流峰值 会逐渐增加,从而缓解外部元件在芯片启动过程中 的电压应力。芯片每次重启都伴随软启动。

7.3 准谐振 PWM 控制

PL3567 采用了准谐振技术,在 DCM 模式下,控制功率管在谷底开通,从而减少其开关损耗和系统 EMI。

DCM 模式下,当副边绕组电流下降到零,副边整流管关断后,变压器励磁电感和线路上的寄生电容产生谐振。PL3567通过VD管脚检测辅助绕组电压,

当检测到辅助绕组电压的谷底时开通功率管。

7.4 无噪音绿色工作模式

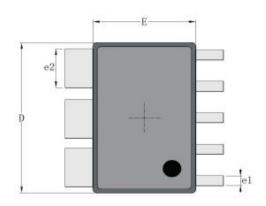
在轻载或空载条件下,功率管开关损耗成为开关电源的主要损耗,为了降低该损耗,PL3567在不同负载条件下采样FB端电压并自适应地调节工作模式。系统轻载时,FB端电压下降,在该电压小于内部阈值电压,系统会进入绿色工作模式,PWM频率会持续地降低,最小的工作频率固定为22kHz。在空载条件下,FB电压会进一步下降,系统会进入突发模式,从而降低了系统损耗,同时在不同状态下,系统没有音频噪音。

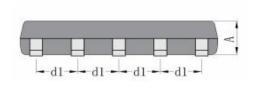
7.5 电流采样和前沿消隐

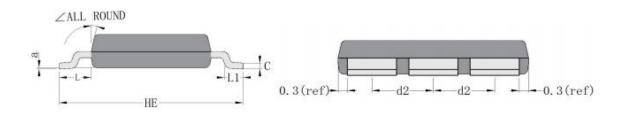
通常电流模 PWM 控制器反馈电流和电压信号稳定环路控制,并实现调节功能。PL3567 通过 CS 管脚检测原边电流,并实现逐周期限流。每次功率管导通时,电流检测不可避免的出现尖脉冲,为了避免

Datasheet PL3567

误触发,芯片内置了前沿消隐时间,在该时间内过 7.7 保护功能 流比较器失效。


7.6 内置斜率补偿


PL3567 在原边电流检测电路上叠加了斜坡电压,这 样可极大地提高闭环的稳定性,并避免 PWM 峰值 电流模的次谐波震荡。


PL3567 内置了多种保护功能,包括:逐周期限流保 护, CS 短路保护, VDD 过压欠压保护, 交流过压 欠压保护,输出过压欠压保护,过温保护等。

8 封装

ASOP-6 封装

Unit	80	A	С	D	E	HE	d1	d2	e1	e2	L	L1	a	
	max	1. 25	0.22	6.4	4. 1	6.1	1.35	2. 05	0.45	1.65	1.15	0.80	0.2 (ref	
mm	typ	1. 15	0.20	6.2	3. 9	6.0	1.30	2. 00	0.40	1.60	1.05	1		108
200	min	1. 05	0.15	6.0	3, 7	5. 9	1.25	1. 95	0.35	1.55	0.95	0.40		
mil	max	49	9	252	161	240	53	81	18	65	45	31	8 (ref)	12°
	typ	45	8	244	154	236	51	79	16	63	41	/		
	min	41	6	236	146	232	49	77	14	61	37	16		

9 注意事项

聚元有权在任何时刻修改其产品信息,不再另行通知;客户在下订单前应确保产品信息的及时更新和完整性。